
Embedding Apache Directory Server into

Applications

By Alex Karasulu

Introduction: Coverage Introduction: Coverage

� Core: Server Architecture

� Core Configuration Interfaces

� Schema Customizations

� Startup/Shutdown Sequence

� Enabling Protocol Services

� Testing

� Advanced Configuration
– Hot Reconfiguration

– Introducing New Interceptors (Aspects)

Experience and ExpectationsExperience and Expectations

What is your background experience and
expectations from this session?

� LDAP Knowledge

� JNDI API Familiarity

� What directory servers have you used
before?

� Have you tried ApacheDS?

Server Core ArchitectureServer Core Architecture

� What is the core?

� ApacheDS LDAP JNDI Provider

� Interceptor Mechanism

� Interceptors

� Partition Nexus

� Partitions

Core: What is it?Core: What is it?

The ApacheDS core is a JNDI provider that
manages a local hierarchical store of
Attributes objects, based on the LDAP

namespace.

Core: WhatCore: What’’s in there?s in there?

� Nexus Singleton

� Partitions

� Nexus Proxies

� Interceptors

� InvocationStack

� JNDI Interfaces

Core: PartitionsCore: Partitions

� Partitions store entries
(javax.naming.directory.Attributes).

� Exposes CRUD operations mapping to LDAP
operations.

� Multiple heterogeneous partitions may exist.

� Partitions store disconnected entry trees.

� Partitions store entries below some naming
context called the partition suffix. The names of
all entries within a partition end in the suffix.

� Partitions are kept as simple as possible: they
only need to be concerned with entry access and
storage.

Core: Partition NexusCore: Partition Nexus

� Presently the nexus is a singleton.

� It is a partition that does not store entries.

� Calls are delegated to other partitions.

� Call routing is based on namespace.

� Several partitions may be “attached”.

� Custom implementations can be attached.

� Stores immutable RootDSE in memory.

� Has ops to add/remove/list partitions.

Core: System PartitionCore: System Partition

� Always present with suffix ou=system.

� Provides storage for configuration info.

� Implementation based on JDBM B+Trees.

� Cannot be detached from the nexus.

Core: JNDI ProviderCore: JNDI Provider

� JNDI is the access API used to hide internals.

� Nexus, partitions etc. are all hidden.

� JNDI Contexts call internals to perform
operations on Attributes objects in partitions.

� Feels like LDAP but it’s not: just the namespace.

� Relative Name arguments to Contexts are
transformed into absolute distinguished names.

� Contexts perform absolute operations on
internals to satisfy JNDI calls.

Core: Nexus ProxyCore: Nexus Proxy

� Nexus proxy objects do as their name
suggests, they forward calls to the nexus.

� Forwarded calls are intercepted to
introduce additional services.

� Each Context instantiated has a proxy.

� Contexts call proxies as if it is the nexus.

� Proxies start the interception mechanism.

Core: Interceptor MechanismCore: Interceptor Mechanism

� Interceptors trap Context => Nexus calls.

� Several interceptors in a chain trap calls.

� Each interceptor can:

– change arguments,

– alter return values,

– bypass calls to the target method on the nexus,

– transform, re-throw or consume exceptions.

� Interceptors introduce and centralize aspects.

� Interceptors are very powerful and dangerous.

Core: Interceptor Mechanism IICore: Interceptor Mechanism II

� Some aspects implemented with interceptors are:
– Scheme Checking

– Access Control Checks

– Operational Attribute Maintenance & Filtering

– Name Normalization

– Collective Attribute Injection

– Subentry Filtering

– Authentication

– Exception Handling

– JNDI Event Delivery

Core: InterceptorChainCore: InterceptorChain

� Contains instances of all interceptors.

� A single chain is present.

� Invokes each interceptor in order.

� Last hard-coded interceptor calls nexus.

� Performs bypass instructions.

� Bypass feature prevents infinite recursion.

� Interceptors and the InterceptorChain work
in conjunction with the InvocationStack.

Core: InvocationStackCore: InvocationStack

� Contains a Stack of Invocation objects for each
thread.

� Why?
– Interceptors access Invocation objects for information

– Interceptors call proxy methods to operate on the DIT

– Triggers may invoke stored procedures that use JNDI

� Invocation objects contain:
– the JNDI context making the nexus method call

– the name of the method invoked

– the values of invoked method arguments

– the proxy object for the context

Core: What maintains the Core: What maintains the

stack?stack?

� Proxies create Invocation objects on each
call.

� Before invoking the InterceptorChain the
proxy pushes the Invocation onto the stack.

� After the InterceptorChain returns or an
exception is thrown, the Invocation is
popped off of the stack.

Core: SummaryCore: Summary

The best way to summarize the architecture
is to exercise a walk through a stack trace
on an operation against a JNDI Context.

Intermission

Next: Core Configuration
Interfaces

Config: JNDI Environment Config: JNDI Environment

� Core uses JNDI for configuration.

� Some standard JNDI keys are also
supported as seen on the next slide …

Configuration: Standard JNDI KeysConfiguration: Standard JNDI Keys

� Context.PROVIDER_URL

– Since provider is local just specify a DN

� Context.INITIAL_CONTEXT_FACTORY
– org.apache.ldap.server.jndi.CoreContextFactory

– org.apache.ldap.server.jndi.ServerContextFactory

� Context.REFERRAL

� Context.SECURITY_AUTHENTICATION

� Context.SECURITY_CREDENTIALS

� Context.SECURITY_PRINCIPAL

� Context.STATE_FACTORIES

� Context.OBJECT_FACTORIES

Configuration: LDAP Specific KeysConfiguration: LDAP Specific Keys

� java.naming.ldap.attributes.binary

� java.naming.ldap.control.connect

� java.naming.ldap.deleteRDN

� java.naming.ldap.derefAliases

� java.naming.ldap.ref.separator

� java.naming.ldap.referral.limit

� java.naming.ldap.typesOnly

� java.naming.security.sasl.authorizationId

� java.naming.security.sasl.realm

� java.naming.security.sasl.callback

Configuration: Provider Specific KeysConfiguration: Provider Specific Keys

� An additional key/value pair is needed:

org.apache.ldap.server.configuration.Configuration.JNDI_KEY

� Value is a subclass of:

org.apache.ldap.server.configuration.Configuration

Configuration: StartupConfigurationConfiguration: StartupConfiguration

� A subclass of Configuration used to start the core.

� Contains additional settings as beans or bean properties:
– workingDirectory (File)

– allowAnonymousAccess (boolean)

– accessControlEnabled (boolean)

– authenticationConfigurations (Set <AuthenticationConfiguration>)

– interceptorConfigurations (List <InterceptorConfiguration>)

– bootstrapSchemas (Set <BootstrapSchema>)

– contextPartitionConfigurations (Set <DirectoryPartitionConfiguration>)

– testEntries (List <Attributes>)

� Default constructor configures all subordinate beans.

� Mutable version available for tweaking settings.

� First time use in InitialDirContext starts up the core.

Configuration: ShutdownConfigurationConfiguration: ShutdownConfiguration

� Shuts down the core when included in
environment of new InitialContext.

� Returned Context, DeadContext, is useless.

� Automatically calls synch() on all
partitions to push caches to disk.

� Startup automatically registers a JVM
shutdown hook to shutdown the core with
a ShutdownConfiguration instruction.

Configuration: SynchConfigurationConfiguration: SynchConfiguration

� Forces the Nexus to call synch() on all
partitions to flush caches to disk.

� Without calling synch() caches may never
flush depending on the partition
implementation.

Configuration: main() with defaults.Configuration: main() with defaults.

� Let’s run the example application

Configuration: Custom PartitionsConfiguration: Custom Partitions

� A MutableStartupConfiguration is used.

� We prepare and populate a set with
DirectoryPartitionConfigurations.

� Let’s run the example application with the
custom partition.

Configuration: Default SchemaConfiguration: Default Schema

� By default ApacheDS comes with a standard set
of published schema even though not all are
setup by default.

� Default Schema:
– CoreSchema (Highly Recommended)

– CosineSchema

– ApacheSchema (Required)

– InetorgpersonSchema

– JavaSchema

– SystemSchema (Required)

– CollectiveSchema

Configuration: Additional SchemaConfiguration: Additional Schema

� Additional Schema:

– ApachednsSchema

– AutofsSchema

– CorbaSchema

– DhcpSchema

– Krb5kdcSchema

– MiscSchema

– NisSchema

– SambaSchema

Configuration: Additional SchemaConfiguration: Additional Schema

� Just populate a set with all the schema you would
like to use.

� Call setBootstrapSchemas() with your set.

� WARNING: Schema depend on other schema for
syntaxes, matchingRules, attributeTypes and
other objectClasses.

� Make sure the set of schema include dependent
schema otherwise ApacheDS will let you know
on startup when dependencies cannot be
resolved.

Configuration: Using Custom SchemaConfiguration: Using Custom Schema

� BootstrapSchema classes are generated from
OpenLDAP schema files.

� The directory-maven-plugin is used to generate
the source files.

� We recommend creating a maven subproject to
generate these sources, compile them and to
produce the jar.

� The jar can later be incorporated into the path
used to startup an application that embeds
ApacheDS and uses the custom schema.

Configuration: Custom SchemaConfiguration: Custom Schema

� Copy the custom schema project.

� Add your schema file to
${basedir}/src/main/schema.

� Set properties in project.properties for the
schema and its dependencies.

� Now run maven directory:schema.

� Check ${basedir}/target/schema for the
generated schema files.

� You can now produce the jar by running maven
jar.

� Let’s demonstrate a custom application that now
uses this custom schema.

Protocols: Enabling ServicesProtocols: Enabling Services

� This goes beyond just using the core.

� You can encapsulate yourself from the details by
using the ServerContextFactory and the
ServerStartupConfiguration that are part of
apacheds/main.

� This InitialContextFactory implementation uses:
– MINA: Multipurpose Infrastructure for Network

Applications (ApacheDS Networking Layer)

– Protocol Providers for LDAP, Kerberos, Change
Password, NTP and DNS.

Protocols: Start what you like!Protocols: Start what you like!

� By default only the LDAP protocol provider is
started by the ServerStartupConfiguration.

� Other protocols can be configured to start up as
well using a MutableServerStartupConfiguration.

� All protocols backend their content within the
partitions of the core.

� Each protocol may have its own custom
configuration parameters.

Protocols: LDAP ParametersProtocols: LDAP Parameters

� LDAP configuration parameters are
exposed as bean properties on the
ServerStartupConfiguration:

– enableNetworking (boolean:true)

– ldapPort (int:389)

– ldapsPort (int:636)

Protocols: LDAP ExampleProtocols: LDAP Example

� Let’s build a custom application that
embeds ApacheDS and exposes LDAP
access on port 10389.

� See projector for code.

� Let’s run the application.

� Let’s connect to the server with an LDAP
Browser.

Protocols: Krb5 ParametersProtocols: Krb5 Parameters

� Presently most Kerberos configuration
parameters are expected as env properties.

� The one configuration property on the
ServerStartupConfiguration is a boolean to
toggle it on or off.

� The list of configuration parameters are
listed on the next slide.

Protocols: Krb5 Parameters IIProtocols: Krb5 Parameters II

� kdc.principal

� kdc.primary.realm

� kdc.default.port

� kdc.entry.basedn

� kdc.encryption.types

� kdc.allowable.clockskew

� kdc.buffer.size

� kdc.pa.enc.timestamp.required

� tgs.maximum.ticket.lifetime

� tgs.maximum.renewable.lifetime

� tgs.empty.addresses.allowed

� tgs.forwardable.allowed

� tgs.proxiable.allowed

� tgs.postdate.allowed

� tgs.renewable.allowed

Protocols: Kerberos ExampleProtocols: Kerberos Example

� Let build an application which embeds
ApacheDS and only exposes the Kerberos
protocol while disabling LDAP access.

� Let’s run the example application.

� Connect to it with kinit.

Testing: AbstractTestCaseTesting: AbstractTestCase

� Within the core there is an
AbstractTestCase class which extends
JUnit TestCase.

� This can be used to conduct tests on your
application which embeds ApacheDS with
a custom configuration.

Testing: AbstractServerTestTesting: AbstractServerTest

� If you would like to test your application’s
configuration with networking protocols
enabled then you can use this alternative
JUnit TestCase.

� You can find this test case within the main
project’s jar.

Advanced: PossibilitiesAdvanced: Possibilities

� ApacheDS partitions can be added and
removed while the server is running.

� Aspects are powerful features. New
aspects can be added to ApacheDS using
custom Interceptors.

Advanced: Adding Partitions to Advanced: Adding Partitions to

a Live Instance a Live Instance
� An AddDirectoryPartitionConfiguration is
used to add partitions to the core while it is
running.

� As with other configuration objects, it is
passed into the core using a new
InitialContext.

� The environment must have a
Configure.JNDI_KEY set to an instance of
a AddDirectoryPartitionConfiguration.

Advanced: Removing Partitions Advanced: Removing Partitions

From a Live InstanceFrom a Live Instance

� RemoveDirectoryPartitionConfiguration

� Apply the same pattern!

Advanced: Add Remove Advanced: Add Remove

Example ApplicationExample Application

� Let’s look at the code.

� Let’s run the application.

Advanced: Custom InterceptorsAdvanced: Custom Interceptors

� Be forewarned Interceptors are very
powerful and so can do very good things,
however they can also give you a bad day
if not implemented correctly.

� Introduce new aspects into the server by
using custom interceptors.

Advanced: Example Interceptor Advanced: Example Interceptor

for Managing Constraintsfor Managing Constraints
� In this example we build a custom
Interceptor and add it to the core.

� The Interceptor maintains a changelog in
LDIF file format.

� Let’s look at the code.

� Let’s run the application and test again.

SummarySummary

� We’ve learned quite a few things:

– ApacheDS Architecture

– Configuring and embedding ApacheDS

– Customizing configuration for new schemas,

interceptors and partitions.

– Enabling ApacheDS protocol providers.

Where to Get More InformationWhere to Get More Information

� The example projects for this tutorial are
available on a public svn server here:
https://svn.safehaus.org/repos/sandbox/apachecon

� Here you can also find the templates we used as
well as this power point presentation.

� Other related sessions:
– TU14 Introduction To MINA

– TU23 Secure Single Sign On with Apache Directory
and Apache Kerberos

� List books, articles:
– http://www.screaming-

penguin.com/main.php?storyid=4972

