The Apache Directory Project -
Toolchain for Developers

by Stefan Seelmann

1 Introduction

LDAP is widely adopted; directory servers like Active Directory or OpenLDAP are often used
as central user repository. However many developers are not familiar with LDAP because of
fear or dislike of its complexity. One very likely reason is the lack of tooling. One aim of the
Apache Directory project is to provide solutions and tools to make LDAP more convenient for
developers. This paper will introduce the tools provided by the Apache Directory project and

will show how these can help application developers to integrate LDAP into their applications.

2 Tool Overview

The Apache Directory project consists of two major sub-projects: Server and Studio.

2.1 Apache Directory Studio

Apache Directory Studio is a LDAP client platform. It is based on Eclipse and extends it with

several plugins:

e The LDAP Browser Plugin is a tool for browsing, searching and editing entries present in
an LDAP Server.

e The LDIF Editor Plugin can be used to edit LDIF files. It provides syntax highlighting

and context assistance.

e The Schema Editor Plugin is intended to design and edit the Schema of an LDAP Server
(object classes and attribute types).

e The Configuration Plugin for Apache DS can be used to edit the configuration file of the
Apache Directory Server.

e The ApacheDS Plugin provides an integrated LDAP server within Apache Directory Studio.

These plugins can be installed into an existing Eclipse using the update site. Developers who
are familiar with Eclipse will experience a seamless integration into their IDE. There are also
installers and tar balls for Mac OS, Linux and Windows available to run Apache Directory Studio

as a standalone application.

Apache Directory Studio leverages the Eclipse platform (Views, Editors, Wizards, Jobs-API,
help sytem) by implementing Eclipse extension points. It also provides its own extension points

to make itself extensible.

2.2 Apache Directory Server

Apache Directory Server is an embeddable directory server entirely written in Java, which has
been certified LDAPv3 compliant by the Open Group. Besides LDAP it supports Kerberos 5 and
the Change Password Protocol. It has been designed to introduce triggers, stored procedures,

queues and views to the world of LDAP which has lacked these rich constructs.

For Java application developers it provides helpful features:

e [t is easy to setup for your development environment: just extract a zip/tar.
e It is embeddable into each Java application and can be used as embedded data store.

e The JUnit4 based Testing Framework makes it possible to test LDAP persistence code

using unit tests.

3 Feature Tour

The following scenario is used to go through the features of the Apache Directory project: A
directory server containing user data exists. A new requirement is to create an application to
manage company cars within the directory server. Existing users should be linked as owner of

the company cars.

3.1 Explore the Productive Server

The first step when working with an LDAP server is to get an overview of the DIT structure,
available data and used schema. Apache Directory Studio provides a feature-rich LDAP browser

for doing so.

At first a connection to the production directory server needs to be established. Connections are
managed within the Connections View. The creation of a new connection is done by starting the
New Connection Wizard. This wizard can also be used to test a connection with different types

of encryption and authentication parameters.

The LDAP Browser View shows the DIT structure of the directory server, beginning from the
RootDSE. When selecting an entry, its attributes are displayed in the Entry Editor . Different
kinds of attributes (objectclass, mandatory and optional attributes) are rendered in different
fonts (Figure[1).

A very helpful feature is the ADVANCED menu item of the context menu. It provides actions to

extract particular information that is often needed in LDAP code or configuration files:

e DN or URL of the entry (e.g. for the search base)
e names or values of selected attributes (e.g. all objectClass values)

e a composed filter of selected attributes (e.g. for a search)

|H% LDAP Browser @ & | F

1]
]

4

0

ui

I[= % o
= [#) Root DSE (2]
v @ dc=example.de=com (6}
[en=admin
P & ou=Departments
P & ou=Projects
P & ou=Rooms
P & ou=Test
~ & ou=lsers (22]
& cn=Abel Nasato
4 cn=Adan Abrams
f} cn=Agenia Networks
& cn=Akram Nickels

Ls# Connections .j Servers |
fi% 3 L P | BB

| L Dew | |

| I

| e Prod |

st Entry Editor 22

||| |DN: cn=Adan Abrams, ou=Users,dc=example,dc=com

_i Attribute Description

objectClass
objectClass
objectClass
objectClass
objectClass

on

sn
eduPersonAffiliation
employeeNumber
givenName
jpegPhoto

mail
roomiumber
telephoneMumber
uid

userPassword

| Value

eduPerson (auxiliary)
inetOrgPerson (structural)
organizationalPerson (structural)
person (structural)

top (abstract)

Adan Abrams

Abrams

staff

8626

Adan

JPEG-Image (76x100 Pixel, 6940 Bytes)
adan.abrams@example.com

1523

223-876-7204

adan.abrams

S5HA hashed password

Querying and extracting information is a common task of LDAP applications. The powerful

Search Dialog of Apache Directory Studio helps to compose proper and efficient search queries.

Figure 1: LDAP perspective

All search parameters can be extracted from the Search Logs View.

A last tool to mention is the Schema Browser which can be used to navigate through all object

classes, attribute types, syntaxes and matching rules of the directory server.

3.2 Setup LDAP Server for Development Environment

For development and experimenting it is always useful to have a LDAP server that can be

recovered from time to time. A complete LDAP server - the Apache Directory Server - is

integrated and can be started, stopped and configured using a nice GUI.

] serverxm| i3
Partitions
All Partitions

S system

al

& example

jud servers 53 5
| Server State
5 Dew [started

[Add...

| Delete

Partition Details

1

Suffix:

Set the properties of the partition.

example

Cache Size; 100

dc=example,dc=com

[Enable optimizer

=75 (& Synchronization on write

Indexed Attributes
Set the indexed attributes of the partition.

de [100]
ou [100]

(=]

. Edit...

krbSPrincipalName [100] -

uid [100]

objectClass [100] |_i

| General | Authentication | Partitions | Irﬁ;‘.e"réépfbl:s | Extended Ope'r-ét'io'ns I

Servers are managed in the Servers View (Figure [2). A new server is created by selecting

Figure 2: Servers view

Add...

Delete

=]

i =

NEW|NEW SERVER from the context menu and entering a name in the wizard. A double-
click on the created server opens the configuration editor. The GENERAL tab specifies the listen
ports. On the PARTITIONS tab additional partitions can be added, if a new suffix is needed. After
finishing the configuration the server can be started (RUN from context menu) and a connection

to this server can be created (LDAP BROWSER|CREATE A CONNECTION from context menu).

3.3 Merge Schema from Productive Server to Development Environment

The created LDAP Server doesn’t contain any data and it makes sense to copy some example
data from the production server. ApacheDS is shipped with all the default schemas defined in
various RFCs. However the production server contains a custom schema and it is necessary to

apply this schema first.

Schemas can be managed in the Schema Editor Perspective. The schemas of both production and
the development server can be loaded by creating a new schema project of type Online Schema
and selecting the connection to the server. The Schema View shows the available schemas and

its object classes and attribute types.

To merge different schemas one must open the target schema and select IMPORT|MERGE SCHEMAS
FROM OTHER PROJECTS from context menu of the Schema View. In the wizard the complete
project or specific attribute types and object classes can be selected. It is recommended to only
select object classes that are needed for the test data (Figure[3), dependant attribute types can
be merged automatically. The merged object classes and attribute types are placed in the schema
named merge-of-<project name> (Figurel4). This schema can be exported to the schema format
of ApacheDS (EXPORT|SCHEMAS FOR APACHEDS from context menu) and imported via the
LDAP Browser (IMPORT|LDIF from context menu). The new schema elements can be reviewed

in the schema browser. Reloading the schema might be necessary using RELOAD SCHEMA option.

[schema - §2 Hierarchy E@®@ @G| 5 ¥ =0
Merge Schemas from other Projects = [E] merge-from-Prod [~]
Please select schema elements to merge. E.‘ - [Attribute Types (11)

- €Y eduPersonaffiliation [1.3.6.1.4.1.5923.1.1.1.1]

Select the schema elements to merge:

ev

rod

| schema

(1 &2 Attribute Types

= [J] [Object Classes

@ © eduPerson

[@ extensibleObject

@, eduPersonAssurance [1.3.6.1.4.1.5923.1.1.1.11]

@ eduPersonEntitlerment [1.3.6.1415923.1.1.1.7]

Gﬂ, eduPersonMickname [1.3.6.1.4.1.5923.1.1.1.2]

(t, eduPersonOrgDN [1.3.6.1.4.1,5923.1.1.1.3]

Gﬁ, eduPersonOrgUnitDN [1.3.6.1.4.1.5923.1.1.1.4]

@, eduPersonPrimaryAffiliation [1.3.6.1.4.1.5923.1.1.1.5]
@. eduPersonPrimaryOrgUnitDN [1.3.6.1.4.1.5923.1.1.1.8]

1 @ groupofiames 2] Q, eduPersonPrincipalMame [1.3.6.1.4.1.5923.1.1.1.6]

(t, eduPersonScopedAffiliation [1.3.6.1.4.1.5923.1.1.1.9]
@) eduPersonTargetedD [1.3.6.1.4.1.5923.1.1.1.10]

= [Object Classes (1)
@4 eduPerson [1.3.6.1.4.1,5923.1.1.2]

i B

@ Ba: | Mext> Anish | cancel }

]

Figure 3: Merge schema wizard .
Figure 4: Merged schema

3.4 Copy Example Data

The next step is to copy the DIT structure and some example data from the production server

to the development server.

Select the structural entries beginning from the context entry and some data entries in the LDAP
Browser View and choose ADVANCED|COPY ENTRY As LDIF from context menu. Afterwards
open a new LDIF editor (FILE|NEW|LDIF FILE) and paste the copied data into it (Figure 5)).

If necessary the data can be modified. One feature to be mentioned here is the handling of
BASE-64 encoded values. If the data contains non-ASCII characters or even binary values this
data can be edited with specialized value editors. This is done by navigating the cursor to the

attribute and pressing F'7 or selecting EDIT VALUE or EDIT VALUE WITH from context menu.

To import the data into the development server one needs to choose a connection of the devel-

opment server using the Browse... button and hitting the Ezecute LDIF button.
In the end the LDIf should be saved to disk. Later, this file can be tweaked and extended in

order to create more test data. It can also be used to restore the development server to a known

state.

There are two more methods worth mentioning, how to copy example data: Some single entries
can just be transferd by copy/paste them. If more data is needed then it is recommended to use
the powerful Fxport LDIF and Import LDIF wizards.

% LDAP Browser @ & | 8l&| T = 0|5 dataldit 5 G Entry Editor =g
";-T-;_DIT :.._j |Dev || Browse.. | [
~* 66 HGEtDSE (2] | 1-dn: dc=example,dc=com -

¥ @ de=example.de=com (6] | 2 obhjectClass: dcObject
[en=admin 3 objectClass: organization
P & ou=Departments 4 objectClass: top
P & ou=Projects = 5 dc: example
P & ou=Rooms i 5 o: example.com
P & ou=Test _
< & suslisers (22) I Z--dn: ou=Users, dc=example, dc=com

i objectClass: organizationallnit | &

R | 10 objectClass: top
= =l 11 ou: Users

j cn=Agenia Networks 12

& cn=Akram Nickels 12-dn: cn=Adan Abrams,ou=Users,dc=example,dc=com
3 cn=Ardys Paliwal 14 objectClass: eduPerson

% cn=Briana Portelance 15 objectClass: 1netOrgPerson

& cn=Chuck Brunata 16 objectClass: organizationalPerson

17 objectClass: person
12 objectClass: top
19 cn: Adan Abrams &

& cn=Fina Dawkins
& cn=Gabbie Delisle
ff cn=Goel Dobby =

|
‘ & cn=Abel Nasato
|

<

Figure 5: Copy example data

3.5 Create a new Schema

To be able to store objects of cars company within the directory a new schema is required. The
already known Schema FEditor can be used for that. The Schema View provides wizards for
creating schema object classes and attribute types. There are editors available for editing object
classes and attribute types (Figure6). The steps to import the schema into the development
server are the same as above: Export the schema in ApacheDS format and import the created
LDIF. It is also possible to export the schema to other formats, like the common OpenLDAP

schema file format.

[schema 2 Hierarchy| = B ||G) companycar £2 & licenseNumber & leasingStart) leasingEnd =8

BEGE BB 7Y General information
TE - ; [Epecify general infermation (aliases. OID. etc.).
apache |
L ‘EE R o i Aliases R
apachedns
b B asacticmeta Edit aliases
b [l autofs olD: 1.3.6.1.4.1.33779.0.1.1
b [l collective Schema companycar
= [] companycar 3 A company car
= [Attribute Types (3] Description

@Y leasingEnd [1.3.6.1.4.1.33779.0.2.3]

@ lzasingStart [1.3.6.1.4.1.33779.0.2.2] @ top - (2.5.6.0) Aaa

@Y licenseNumber [1.3.6.1.4.1.33779.0.2.1] Superior classes

= [Object Classes (1) — Remove |

G companyCar [1.3.6.14.1.33779.0.1.1]
b B corba Class type Structural ~ |
> [core | Obsolste
b [El cosine
I El dhep Mandatory attributes Optional attributes
ke BB ML specify the mandatory attribute types Specify the optianal attribute types

| ! |
@ leasingEnd - (1.3.6.1.4.1.37 | add @ owner - (2,5.4.32) Add

& Projects & =08 €} leasingStart - (136141

S @ licenseNumber - (1:3.6.1.4. Remove | Remove
wh

& Prod ||| overview [Source Code |

Figure 6: Schema Editor perspective

3.6 Unit testing

Automated tests are essential for high-quality software development. The JUnit4 based testing

framework of ApacheDS can be used to test the LDAP persistence code for Java applicaitons.

2
LDAP Persistence Code |« @ JUnit Test Code

embedded
ApacheDS

Figure 7: ApacheDS testing framework

Figure[7/shows the idea behind the testing framwork. In the test code an embedded ApacheDS is
started and configured (1). Then the test code invokes the persistence code (2). The persistence
code either modifies data in the embedded ApacheDS or retrieves data and returns some objects
to the test code. At last the test code checks that the expected modifications were done (4) or

that the expected objects were returned.

Figure[8/shows an JUnit test eample. The annotations in lines 1-4 are used to setup the embedded
ApacheDS. Line 1 tells JUnit to use the custom runner which starts the embedded ApacheDS.
Line 2 is used to revert modifications done by a test method to ensure the same known state for
each test. Line 3 (optional) defines the factory class that starts and configures the embedded
ApacheDS. Line 4 (optional) is used to inject custom schema and data into the LDAP server.
The static variable ldapServer in line 7 is injected from the framework and can be used to
access the embedded LDAP server programatically. JUnit4 requires to annotate the test method
(line 10-23) with @Test. In lines 13-15 the business objects to persist are constructed. The
CompanyCarDao in line 16 contains the persistence code and in line 17 the save method is
invoked that creates an entry in the LDAP server. To check if the persistence code worked the

ldapServer object is used to lookup the created entry directly from the embedded ApacheDS

{

OO0 ~NOO O WN =

o
= O

{
12

13

14

15

16

17

18

19

20

21

22

23 }
24 }

@RunWith(SiRunner.class)

@CleanupLevel (Level.METHOD)

QFactory (ApacheDsFactory.class)

@ApplyLdifFiles({ "/companyCar_schema.ldif", "/companyCar_data.ldif" })
public class CompanyCarDaoTest

public static LdapServer ldapServer;

QTest
public void testPersistCompanyCar() throws Exception

// create the company car

Calendar leasingStart = Calendar.getInstance();

Calendar leasingEnd = Calendar.getInstance();

CompanyCar car = new CompanyCar("QQ-AA-1234", leasingStart, leasingEnd);
CompanyCarDao dao = new CompanyCarDao();

dao.save(car);

// assert the company car was created

Entry entry = ldapServer.getDirectoryService().getAdminSession() .lookup(
new LdapDN("licenseNumber=QQ-AA-1234,ou=Cars,dc=example,dc=com"));

assertNotNull(entry);

(lines 20-22).

Figure 8: JUnit test example

4 Outlook

We want to create more tools that help making LDAP more attractive for developers. New
features may include code generators to create Java classes and persistence code (DAOs) from

LDAP schema. The Eclipse framework also provides powerful graphical editors which can be

used for schema design.

Please join the Apache Directory community and report bugs and new ideas, participate on our

mailing lists, write documentation and contribute code.

	1 Introduction
	2 Tool Overview
	2.1 Apache Directory Studio
	2.2 Apache Directory Server

	3 Feature Tour
	3.1 Explore the Productive Server
	3.2 Setup LDAP Server for Development Environment
	3.3 Merge Schema from Productive Server to Development Environment
	3.4 Copy Example Data
	3.5 Create a new Schema
	3.6 Unit testing

	4 Outlook

